Azobrücken aus Azinen, VII¹⁾

Diels-Alder-Reaktionen mit inversem Elektronenbedarf zwischen Isopyrazolen und Cycloalkenen sowie Cycloalkadienen. – Ein Vergleich von Säure-Katalyse und Beschleunigung durch Druck

Karin Beck^{2)a}, Siegfried Hünig*^a, Frank-Gerrit Klärner*^b, Petra Kraft^{3)a} und Uwe Artschwager-Perl^b

Institut für Organische Chemie der Universität Würzburg^a, Am Hubland, D-8700 Würzburg

Fakultät für Chemie der Universität Bochum^b, Postfach 102148, D-4630 Bochum 1

Eingegangen am 1. Juni 1987

Die Isopyrazole 1 und 2 liefern unter Säurekatalyse mit den $C_3 - C_8$ -Cycloalkenen (3-8) sowie mit Norbornen (9), 1,4-Cyclohexadien (18), 1,5-Cyclooctadien (19), Norbornadien (20) und Benzonorbornadien (21) die erwarteten Cycloaddukte 10-17 und 22-27 mit Azobrücke. Mit 19 entstehen dabei auch die Bisaddukte 24a und 24b. Ohne Säurekatalyse bilden sich aus 2 und den Olefinen die entsprechenden Cycloaddukte unter 7 kbar Druck meist in höherer Ausbeute, mit 20 zusätzlich die Bisaddukte exo, exo-26b und endo, exo-26b. Die unterschiedlichen Reaktionsgeschwindigkeiten der Cycloalkene bei Reaktionen unter Druck korrelieren mit den Reaktionsenthalpien für die Addition von 1,3-Cyclopentadien. Das exo/endo-Verhältnis der Cycloaddukte 25b aus 2b + 20 erweist sich druck- und temperaturunabhängig.

Kürzlich haben wir gezeigt, daß Isopyrazole A unter Protonenkatalyse mit cyclischen Alkenen B in einer Diels-Alder-Reaktion mit inversem Elektronenbedarf zu Derivaten C des 2,3-Diazabicyclo[2.2.1]heptens reagieren, die auf anderem Wege kaum zugänglich sein dürften^{1,4)}. Ihre Bedeutung zeigt sich u.a. in der glatten Photodenitrogenierung bzw. [2+2]-Photocycloaddition, falls C eine zur N = N-Gruppe parallel benachbarte C=C-Bindung besitzt¹⁾.

Die vorliegende Untersuchung setzt sich zum Ziel, die beschriebenen Cycloadditionen mit den Isopyrazolen 1 und 2 in folgender Richtung zu erweitern: Es ist zu prüfen,

1) ob sich bei 2 die Säurekatalyse durch Anwendung hohen Druckes ersetzen läßt (bei 1, das trimer vorliegt, wird die Säure zur Monomerisierung benötigt, so daß Säurekatalyse bei der Cycloaddition nicht zu vermeiden ist³),

2) ob sich alle Cycloalkene $C_3 - C_8$ sowie einige nicht konjugierte Cycloalkadiene als Dienophile eignen,

3) ob die Cycloaddition stereoselektiv verläuft.

Azo Bridges from Azines, VII¹⁾. – Diels-Alder Reactions with Inverse Electron Demand between Isopyrazoles and Cycloalkenes or Cycloalkadienes. – A Comparison of Acid Catalysis and Acceleration by Pressure

The acid-catalysed reaction of the isopyrazoles 1 and 2 with the cycloalkenes 3-8, norbornene (9), 1,4-cyclohexadiene (18), 1,5-cyclooctadiene (19), norbornadiene (20), and benzonorbornadiene (21) yields the expected azo-bridged cycloadducts 10 - 17 and 22 - 27. From 19 are also obtained the bisadducts 24a and 24b. At higher pressure (7 kbar) the non-acid-catalysed reaction of 2 and the previously mentioned olefines produces the respective cycloadducts usually in higher yields. In the case of 20 the additional bisadducts exo,exo-26b and endo,exo-26b are formed. Reaction rates for the (pressure-controlled) cycloadditions correlate with the reaction enthalpies of the cycloaddition between cycloalkenes and 1,3-cyclopentadiene. The exo/endo ratio of cycloadducts 25b, formed from 2 and 20 proves to be independent of temperature and pressure.

Reaktion der Isopyrazole 1 und 2 mit Cycloalkenen

Wie ein Blick auf Schema 1 zeigt, lassen sich die Isopyrazole 1 und 2 mit allen eingesetzten Cycloolefinen 3-9 in meist guten Ausbeuten zu den erwarteten Diels-Alder-Addukten 10a - 17a und 10b - 17b umsetzen, so daß nur einige Besonderheiten diskutiert werden müssen.

Es gelingt tatsächlich, beim Einsatz von 2 die Säurekatalyse durch Druck (7 kbar⁴), höhere Temperaturen und teilweise längere Reaktionszeiten zu ersetzen. Das stark negative Aktivierungsvolumen $\Delta V^{\pm} = -25$ bis -45 cm³/ mol⁵) von Diels-Alder-Reaktionen, das bisher kaum für solche mit inversem Elektronenbedarf ausgenutzt wurde⁶), schlägt also auch für das vorliegende System voll zu Buche. Die Druckvariante empfiehlt sich vor allem für säureempfindliche Dienophile (s. u.).

Cyclopropen (3) reagiert als Dienophil unter Säurekatalyse sowohl mit 1 als auch mit 2 zu den erwarteten Cycloaddukten 10a und 10b allerdings in bescheidener Ausbeute (verlustreiche Reinigung). Für die säurefreie Druckreaktion reicht die Reaktivität von 3 gegenüber 2 offenbar nicht aus: Auch bei 80°C und 100°C verschwindet 3 unter Bildung von Polymeren. Die Isopyrazole 1 und 2 sind danach wesentlich

^{a)} Umsatz $^{(-b)}$ Drucklose Bedingungen wie für 1. $^{(-c)}$ Polymerisation des Cyclopropens, auch bei 80°C und 100°C

weniger reaktiv als 6-Oxo-1,3,4-oxadiazine, die auch als cyclische Azine betrachtet werden können und die mit hoher Ausbeute Cyclopropen addieren^{η}. Das Cycloaddukt **11b** aus **2** und Cyclobuten (4) ist bereits bekannt. Allerdings wurde es durch Hydrierung des entsprechenden CyclobutadienAdduktes gewonnen⁸⁾. Seine hohe Lichtempfindlichkeit wurde bisher nicht erwähnt.

Die Addition von Cyclopenten (5) an 1 ist ein Musterfall für den drastischen Einfluß der Reaktionsbedingungen. Das Cycloaddukt 12a konnte bisher nur über die Hydrierung Azobrücken aus Azinen, VII

des entsprechenden Cyclopentadien-Adduktes gewonnen werden²⁾. Beim Einsatz von 1 und 5 in Gegenwart von einem Äquivalent Trifluoressigsäure war 12a nur in Spuren nachweisbar²⁾. Erst die Erhöhung der Säuremenge auf drei Äquivalente beschleunigt die Reaktion in der gewünschten Weise. Dabei werden in Chloroform und Benzol gleich hohe Ausbeuten erzielt. Allerdings muß man zur Produktisolierung das Reaktionsgemisch auf eiskalte, gesättigte Kaliumcarbonatlösung tropfen, um eine stark ausbeutevermindernde Erwärmung zu vermeiden, die z. B. beim Zusatz von festem Kaliumcarbonat auftritt. Wie die Versuche mit *cis*- und *trans*-Cycloocten (*cis*-8, *trans*-8) und 1 sowie 2 zeigen, verläuft die Cycloaddition völlig stereospezifisch. Im ¹H-NMR-Spektrum läßt sich jeweils nur das erwartete Isomere nachweisen. Dieser Befund deutet auf eine konzertierte⁹⁾ [4+2]-Cycloaddition hin. *trans*-8 ist so reaktiv, daß es sich an 2 bereits ohne Säure-katalyse zu 16b addiert. Beim Einsatz von *cis*-8 tritt die schon früher festgestellte größere Enophilie von 1 im Vergleich zu 2 deutlich hervor: Während bei gleicher Konzentration an Trifluoressigsäure mit 1 bereits nach einem Tag bei Raumtemperatur 60% 15a isolierbar sind, hat 2 selbst

Schema 2. Reaktion der Isopyrazole 1 in Chloroform in Gegenwart von 3 Äquivalenten Trifluoressigsäure und 2 bei 7 kbar und 130°C (z.T. in Toluol) mit nicht konjugierten Cycloalkadienen

Ausbeuten unter drucklosen Bedingungen wie für 1 bei 60°C nach Lit.⁴. $-a^{b}$ Umsatz. $-b^{b}$ 2 d, exo-25a 27%, endo-25a, 3.6%. $-c^{b}$ 4 d, exo-25b, 22%; endo-25b, 22%; endo-25b, 2%. $-b^{b}$ 8 d, 9%, Nafion-H; 40 d, 54%. $-c^{b}$ 34 d, 15%, Nafion-H; 27 d, 66%.

nach zwei Tagen bei 60°C cis-8 nicht angegriffen. Hier bietet die Hochdruckreaktion eine ideale Alternative (70% 15b).

Norbornen (9), das man als Ethano-überbrücktes Cyclopenten bezeichnen kann, wurde zum Vergleich ebenfalls der Druckreaktion mit 2 unterworfen. Die bekannte, stark erhöhte Reaktivität von 9^{10} zeigt sich auch hier: Bereits nach 24 h bei 130°C und 7 kbar ist es quantitativ umgesetzt. Die schon beschriebene säurekatalysierte Cycloaddition zwischen 1 und 9^{4} zeigt im Vergleich zum Einsatz der Cycloalkene 5 und 6, daß sowohl Reaktionstemperatur als auch die Reaktionsdauer reduziert werden können.

Reaktion der Isopyrazole 1 und 2 mit nichtkonjugierten Cycloalkadienen

Von nicht konjugierten Alkadienen als Dienophile ist grundsätzlich zu erwarten, daß mit 1 und 2 neben dem 1:1auch 2:1-Cycloaddukte entstehen. Mit 1,4-Cyclohexadien (18) war jedoch beim Einsatz äquivalenter Mengen 1 bzw. 2 und 18 nur das 1:1-Addukt 22a und 22b zu fassen. Das ist nicht verwunderlich, da die Reaktivität von 18 im Vergleich zu 6 erheblich reduziert ist, wie die stark verlängerten Reaktionszeiten und Ausbeuten für 22a und 22b zeigen.

Setzt man hingegen 1 bzw. 2 und 1,5-Cyclooctadien (19) im Verhältnis 1:1 ein, so isoliert man 1:1- und 1:2-Addukte 23a und 23b im Verhältnis 4:1, während die Druckreaktion 23b und 24b sogar im Verhältnis 1:5 liefert. Wegen der C_{2v} bzw. C_{2h} -Symmetrie von 24 ließ sich eine Entscheidung über *cis*- oder *trans*-Position der endständigen Heterocyclen nicht aus den NMR-Spektren treffen. 24a liegt laut Kristallstrukturanalyse als *trans*-Form vor, die auch für 24b angenommen wird¹¹).

Wegen dieser Befunde wurde das früher schon eingesetzte Norbornadien, bei dem bisher nur *exo-* und *endo-***25** a^{12} sowie *exo-* und *endo-***25b** (glatte [2+2]-Photocycloaddition der *endo-*Isomeren¹³) isoliert wurden, nochmals untersucht.

Durch Optimierung der Säurekonzentration (möglichst hoch zur Steigerung der Reaktionsgeschwindigkeit und möglichst niedrig wegen Verbrauchs des Olefins) konnte mit 1+20 (1:1) die Gesamtausbeute an 25a auf 43% erhöht und vor allem der Anteil an endo-Addukt 25a auf 10% vergrößert werden. Wichtig ist dabei die kurze Reaktionszeit von nur 40 min, da nach 24 h nicht nur die Gesamtausbeute auf die Hälfte absinkt, sondern vor allem der Anteil an endo-25a. Dieses ist offensichtlich empfindlicher als exo-25a, wie auch Zersetzungen beim Chromatographieren an Kieselgel zeigen, die sich durch Zusatz von Triethylamin zum Laufmittel unterdrücken lassen. Eine weitere Addition von 1 an das Cycloaddukt 25a, z.B. zu 26a, ist nicht zu beobachten. Auch wenn 1 und 20 im Verhältnis 4:1 eingesetzt werden, ist im ¹H-NMR-Spektrum des Rohproduktes kein Doppeladdukt vom Typ 26a nachweisbar. Der säurekatalysierten Cycloaddition $2 + 20^{11}$ ist die Hochdruckreaktion vorzuziehen. Sie liefert in höheren Ausbeuten ein nahezu reines Rohprodukt mit exo-25b:endo-25b \approx 35:1.

Bei einem Verhältnis von 2:20 = 1:20 entstehen unter den Hochdruckbedingungen bei nahezu quantitativem Umsatz von 2 nur die (1:1)-Addukte *exo*-25b und *endo*-25b im gaschromatographisch sowie ¹H-NMR-spektroskopisch ermittelten Verhältnis von (97.2 ± 0.7) : (2.8 ± 0.7) . Das Verhältnis der Addukte ist zwischen 2.5 und 9.5 kbar sowie 110 und 130°C weder signifikant druck- noch temperaturabhängig (Tab. 4). Es hängt jedoch vom Verhältnis der Edukte 2 und 20 ab. Bei einem Verhältnis von 2:20 = 5:1 beobachtet man unter den gleichen Bedingungen als (1:1)-Addukt nur noch exo-25b (endo-25b < 0.5%) sowie die (2:1)-Addukte exo,exo-26b und endo,exo-26b im Verhältnis 79:18:3. Die unterschiedlichen Konfigurationen von exo,exo-26b und endo,exo-26b gehen aus den ¹H-NMR-Spektren der chromatographisch getrennten Verbindungen hervor.

In Übereinstimmung mit den Symmetrieeigenschaften von exo.exo-26b beobachtet man in diesem Fall nur zwei Signale ($\delta = 0.35$ und 0.78) für die paarweise äquivalenten vier Methylgruppen der substituierten Methylenbrücken, dagegen vier Signale ($\delta = 0.22, 0.26, 0.30$ und 0.61) für die entsprechenden vier nicht äquivalenten Methylgruppen von endo, exo-26b. In Analogie zur Reaktion mit 20 sollte die Addition von 2 an die (1:1)-Addukte exo-25 und endo-25b ebenfalls bevorzugt jeweils -exo- in bezug auf die Norbornendoppelbindung stattfinden. endo, exo-26b stammt somit sicherlich aus endo-25b. Da das Verhältnis der (1:1)-Addukte aus 2 und 20 temperatur- und druckunabhängig ist, wird der tatsächlich auftretende Anteil an exo-25 und endo-25 durch deren unterschiedliche Geschwindigkeit der Folgereaktionen zu den (2:1)-Addukten bestimmt. Aus den angegebenen Produktverhältnissen läßt sich extrapolieren, daß die Addition von 2 an endo-25b rund fünfmal (3:3/18:97) schneller verläuft als die an exo-25b.

Auch mit dem zum Vergleich eingesetzten Benzonorbornadien (21) ließen sich die bisher mit 1 und 2 erzielten Ausbeuten⁴⁾ an 27a und 27b erheblich steigern, ohne daß jedoch in den Rohprodukten Anteile des *endo*-Isomeren nachweisbar waren (¹H-NMR). Für die Cycloaddition 1+21ist wiederum die erhöhte Säuremenge entscheidend, für 2+21 die Anwendung hohen Druckes.

Spektroskopische Eigenschaften der Cycloaddukte

Die spektroskopischen Daten der Cycloaddukte entsprechen weitgehend denen der bereits beschriebenen Cycloaddukte aus 1 und $2^{1.4}$. Im Bereich von 351 nm (16a) bis 364 nm (13b) mit $\varepsilon = 107-263$ zeigen sie in *n*-Hexan den typischen $n-\pi^*$ -Übergang einer Azogruppe als Teil eines Fünfringes.

In Bezug auf die Diazadiene 1 und 2 entstehen ausschließlich die abgebildeten *endo*-Addukte. Das folgt aus den schon veröffentlichten Kristallstrukturen¹⁴⁾ und NOE-Experimenten^{8b)} und ihrem Vergleich mit den übrigen Cycloaddukten. Die ¹H-NMR-Daten von **15a** (*cis*-Addukt) und **16a** (*trans*-Addukt) stützen diese Interpretation. In **15a** erscheinen die Signale der Protonen an der Azobrücke als Singulett bei $\delta = 4.66$ ppm, die der Protonen an der C-C-Brücke als bei $\delta = 2.20$ ppm zentriertes Multiplett. Für **16a** finden sich dagegen für die Azobrückenkopf-Protonen zwei Singuletts bei $\delta = 4.35$ und 4.61 ppm. Das ist eine Folge der *trans*-Verknüpfung, die sich auch an den zwei Signalen bei $\delta = 1.85$ und 2.26 ppm für die C-C-Brückenkopfprotonen zeigt, von denen das hochfeldverschobene dem Proton zuzuordnen ist, das *syn* zur Azogruppe steht. Schließlich spricht bereits die Stabilität der Cycloaddukte **10a** und **10b** für die *syn*-Stellung des Dreiringes. Das entsprechende Derivat des Diaza-bicyclohexans mit zur Azofunktion *anti*anelliertem Cyclopropanring spaltet mit $\Delta G = 21$ kcal/mol (25°C) rasch Stickstoff ab infolge der Wechselwirkung der Walsh-Orbitale des Cyclopropanringes mit den beiden CN-Bindungen¹⁵⁾. Auffällig ist der starke Einfluß der Größe der anellierten Ringe auf den Abstand der Signale für die *exo*und *endo*-geminalen Methylgruppen. Während dieser für C₅-C₈ $\approx \delta = 0.30$ ppm beträgt, sinkt er für C₄ auf 0.08 ppm und steigt für C₃ auf 0.43 ppm an.

Druckabhängigkeit der Diels-Alder-Reaktion von 2 mit Cycloalkenen

Die unkatalysierte Diels-Alder-Reaktion von 2 mit den in Schema 1 und 2 angegebenen Cycloalkenen läuft mit Ausnahme von *trans*-Cycloocten (*trans*-8) nur bei hohem Druck (7 kbar) mit einer auch präparativ verwertbaren Geschwindigkeit ab. Bei Versuchen, die Reaktion durch Temperaturerhöhung bei Normaldruck zu beschleunigen, fanden offensichtlich schon Folgereaktionen (z. B. N₂-Eliminierung) statt, sodaß damit die Ausbeute der gewünschten Primäraddukte nicht verbessert werden konnte.

Um einerseits die Reaktionsbedingungen optimieren zu können, andererseits weiteren Einblick in den Reaktionsverlauf zu gewinnen, haben wir die Druckabhängigkeit der Geschwindigkeitskonstanten der Reaktion von 2 mit Norbornadien (20) bei 130.1 °C ermittelt (Abb. 1, Tab. 3). Au-

Abb. 1. Druckabhängigkeit der Geschwindigkeit (ln k) der Reaktion von Isopyrazol 2 mit Norbornadien (20).

Berdem wurde die Reaktivität ausgewählter Cycloalkene gegenüber **2** bei 130.1 °C und 9.5 bzw. 3.0 kbar untersucht (Tab. 1 und 2).

Der Anstieg von ln k mit dem Druck ist, wie Abb. 1 zeigt, nur bis ca. 2.5 kbar linear und flacht dann deutlich ab. Aus dem Kurvenverlauf kann man extrapolieren, daß die Geschwindigkeitszunahme oberhalb von 10 kbar nur noch gering ist. Aus der Druckabhängigkeit der k-Werte läßt sich mit den üblichen im Exp. Teil angegebenen Methoden das Aktivierungsvolumen $\Delta V_0^*(130.1^\circ\text{C})$ der Reaktion von 2 und 20 zu $-(41 \pm 1) \text{ cm}^3/\text{mol}$ (Auswertung eines quadratischen Polynoms über den gesamten Druckbereich) bzw. $-(43 \pm 2)$ cm³/mol (lineare Auswertung bis 2.5 kbar) berechnen. Mit Hilfe der El'yanov-Beziehung¹⁶⁾ kann man daraus das Aktivierungsvolumen bei 20°C zu $\Delta V_0^* = -28 \text{ cm}^3/\text{mol}$ extrapolieren.

Der Quotient aus dem Aktivierungsvolumen ΔV_0^* mit dem aus den partiellen molaren Volumina von Edukten und Produkten berechneten Reaktionsvolumen ($\Delta \tilde{V} = -28.8$ cm³/mol bei 20°C) ist mit ($\Delta V_0^*/\Delta \tilde{V})_{20} = 0.97$ nicht wesentlich von 1 verschieden. Der Übergangszustand ist damit wie bei vielen anderen Diels-Alder-Reaktionen vom Volumen her produktähnlich, was häufig als ein Indiz für den konzertierten Charakter solcher Prozesse gewertet wird¹⁰.

Aus den Geschwindigkeitskonstanten der Additionen der in Tab. 1 und 2 aufgeführten Cycloalkene an das Isopyrazol 2 geht hervor, daß Cyclohexen (6) eine deutlich geringere Reaktivität gegenüber 2 als die übrigen Cycloalkene besitzt. Der Vergleich der relativen Geschwindigkeitskonstanten bei 9.5 und 3.0 kbar zeigt, daß das Verhältnis der Geschwindigkeitskonstanten nicht signifikant druckabhängig ist. Gegenüber Hexachlorcyclopentadien haben Jenner et al.¹⁷⁾ einen ähnlichen Trend der Reaktivität der Cycloalkene beobachtet. Bei der Reaktion mit 1,2,4,5-Tetrazin-3,6-dicarbonsäure-dimethylester fanden Huisgen et al.¹⁸⁾, daß Norbornen (9) bei Raumtemperatur sogar um den Faktor von rund 9200 schneller als 6 reagiert.

Die unterschiedliche Reaktivität der Cycloalkene versuchte man mit dem Abbau der Cycloalken-Spannungsenergie im Übergangszustand zu erklären. Hierzu wurden wiederholt die Differenzen in den Spannungsenergien der Cycloalkene und der entsprechenden Cycloalkane herangezogen, die wir hier in Tab. 1 mit Hilfe der experimentell zugänglichen Hydrierwärmen berechnet und auf das System Cyclohexen-Cyclohexan bezogen haben. Danach hätte man entgegen den experimentellen Befunden erwartet, daß Cyclohexen (6) reaktiver als Cyclopenten (5), Cyclohepten (7) oder Cycloocten (8) ist.

Eine gute Korrelation der Reaktivität findet man dagegen mit den Reaktionsenthalpien der Addition der Cycloalkene an 1,3-Cyclopentadien, die wir mit Hilfe eines erweiterten MM2-Kraftfeldes¹⁹⁾ berechnet haben (Tab. 1).

Anders als bei dem Vergleich mit den Hydrierwärmen werden bei dieser Rechnung die konformativen Effekte in den Cycloaddukten mit berücksichtigt. So liegt z. B. der Cyclohexanring im entsprechenden Addukt infolge der bicyclischen Klammer, die eine nahezu ekliptische Anordnung an den Brückenkopf-C-Atomen erzwingt, nicht in der sonst

Tab. 1. Relative Geschwindigkeitskonstanten k_{rel} der Reaktion von Isopyrazol 2 mit Cycloalkenen (bezogen auf 6). Experimentelle Hydrierwärmen $\Delta H_{\rm H}$ der Cycloalkene; Reaktionsenthalpien $\Delta H_{\rm R}$ der Addition der Cycloalkene an 1,3-Cyclopentadien, berechnet mit Hilfe eines erweiterten MM2-Kraftfeldes²⁰

	20 20	A ,	cis - 8	[) 5	() 1	() 6
$k_{\rm rel}^{a)} - \Delta \Delta G^{+c)}$	7.7 1.6	5.2 1.3	4.4 1.2	4.3 1.2	4.0 1.1	≡1.0 ≡0.0
$ \frac{k_{\rm rel}^{\rm b)}}{-\Delta\Delta G^{+\rm c}} - \frac{\Delta H_{\rm H}^{\rm c}}{-\Delta H_{\rm H}^{\rm c}} - \frac{\Delta H_{\rm H}^{\rm c}}{-\Delta H_{\rm R}^{\rm c}} $	38.3 ^{d)} 9.9 31.1 6.7	6.3 1.5 33.2 ^{d)} 4.8 27.4 3.0	24.5°) 3.9	5.1. 1.3 26.8 ^{e)} -1.6 27.2 2.8	26.4°) - 2.0	$ \begin{array}{c} \equiv 1.0 \\ \equiv 0.0 \\ 28.4^{\text{e}} \\ \equiv 0.0 \\ 24.4 \\ \equiv 0.0 \end{array} $

^{a)} Bei 130°C, 9.5 kbar- - ^{b)} Bei 130.1°C, 3.0 kbar. - ^{c)} In kcal/ mol. - ^{d)} W. v. E. Doering, W. R. Roth, R. Breuckmann, H.J. Figge, L. Figge, H.-W. Lennartz, W.-D. Fessner u. H. Prinzbach, *Chem. Ber.*, in Vorbereitung; weitere Hydrierwärmemessungen bei D. W. Rogers, L. S. Chol. R. S. Girellini, T. J. Holmes u. N. L. Allinger, J. Phys. Chem. 84 (1980) 1810; R. B. Turner, P. Goebel, B. J. Mallon, W. v. E. Doering, J. F. Coburn, Jr. u. M. Pomerantz, J. Am. Chem. Soc. 90 (1968) 4315; Übersicht: J. L. Jensen, Progr. Phys. Org. Chem. 12 (1976) 189. - ^{c)} H.-W. Lennartz, Dissertation, Univ. Bochum 1979.

üblichen Sessel-Konformation vor, sondern als Wanne, die nach der Rechnung hier um 2.3 kcal/mol stabiler ist. Damit kommt es bei der Reaktion im Sechsring nicht zu dem erwarteten Abbau sondern zu einem Aufbau von Spannung, der sich offenbar in der beobachteten geringeren Reaktivität von Cyclohexen ausdrückt.

Wir haben uns mit Hilfe einer weiteren Rechnung davon überzeugt, daß die vier Methylgruppen des von uns untersuchten Tetramethylisopyrazols 2 jeweils einen gleichsinnigen Effekt auf die Stabilität der Addukte ausüben. Die uns interessierenden Differenzen der Reaktionsenthalpien ändern sich bei den tetramethylsubstituierten Systemen somit nicht nennenswert gegenüber den unsubstituierten Systemen [z. B. $-\Delta\Delta H_R = 6.5$ oder 2.9 kcal/mol für Norbornadien (20) bzw. Norbornen (9) als Dienophil und Cyclohexen (6) wieder als Referenzsystem].

Auch der Befund, daß bei der Reaktion von 2 mit Norbornadien (20) außer exo-25b auch endo-25b und mit Norbornen nur das exo-Addukt 17b entsteht, läßt sich auf unterschiedliche Stabilitäten der Addukte zurückführen. Nach Kraftfeld-Berechnungen ist das exo-Addukt aus Norbornen (9) und Cyclopentadien um 4.2 kcal/mol stabiler als das entsprechende endo-Addukt. Im Fall von Norbornadien (20) wird das endo-Addukt sogar als das um 0.4 kcal/mol stabilere Addukt berechnet. In der Kraftfeld-Rechnung wird allerdings die elektronische Wechselwirkung der benachbarten Doppelbindungen im endo-Norbornadien-Addukt nicht berücksichtigt²⁰⁾. Um diesen Einfluß auf die relative Stabilität der beiden Addukte kennenzulernen, haben wir zu den berechneten Bildungsenthalpien der entsprechenden gesättigten Verbindungen die von Turner et al.²¹⁾ experimentell bestimmten Hydrierwärmen der Doppelbindungen addiert. Im Fall von Norbornen ist der so ermittelte Stabilitätsunterschied des *exo*- und *endo*-Adduktes mit $\Delta\Delta H_1^{e} = 4.0$ kcal/ mol nicht nennenswert verschieden von dem direkt berechneten Wert. Dagegen findet man beim Norbornadien, daß das *exo*-Addukt nun – wenn auch nur geringfügig um 0.8 kcal/mol – stabiler ist als das *endo*-Addukt. Demnach üben die benachbarten Doppelbindungen im *endo*-Norbornadien-Addukt nur einen geringen Effekt auf die Energie des Systems aus.

Die Bildung beider Addukte bei der Reaktion mit Norbornadien (20) läßt sich als Ausdruck der vergleichbaren Stabilität des *exo-* und *endo-*Adduktes verstehen. Im Fall von Norbornen (9) beobachtet man entsprechend der unterschiedlichen Stabilität der beiden Addukte nur das *exo-*Addukt.

Wir danken der Deutschen Forschungsgemeinschaft, dem Minister für Wissenschaft und Forschung des Landes Nordrhein-Westfalen, dem Fonds der Chemischen Industrie und der BASF AG, Ludwigshafen, für die Förderung dieser Untersuchung.

Experimenteller Teil

Geräte, Solventien usw. siehe Lit.¹⁾.

Reaktion von trimerem $1 (= 1_{tri})$ und 2 mit Cyclopropen (3): Nach der Methode von Gloss und Kantz²²⁾ erhitzt man in einem Dreihalskolben mit Intensivkühler, Tropftrichter und Gaseinleitungsrohr 23.0 g (0.30 mmol, 50 proz. Suspension in Toluol) Natriumamid und 12.0 ml Ligroin (Sdp. 90–100°C) in einem schwachen N₂-Strom. Diesen leitet man über den Kühler durch eine Waschflasche mit 4N Schwefelsäure und durch ein mit Diphosphorpentoxid auf Bimsstein gefülltes Trockenrohr. Dann tropft man während 4 h 23.0 g (0.30 mol) Allylchlorid zu und leitet das Gasgemisch in eine auf 0°C gekühlte Lösung von

A) 600 mg (2.08 mmol) 1_{tri} (= 6.24 mmol 1) und 0.50 ml (64.0 mmol) TFA in 5 ml CHCl₃. Nach 6 h bei ca. 20% Umsatz an 1_{tri} durch Zugabe von 1 g K₂CO₃ abgebrochen.

B) 2.00 g (16.1 mmol) 2 und 0.125 ml (16.1 mmol) TFA in 5 ml CHCl₃. Nach 6 h bei ca. 40% Umsatz an 2 wie oben abgebrochen.

Nach Abfiltrieren des Niederschlages, Waschen mit CHCl₃ und Abziehen des Solvens wird der verbleibende Rückstand mehrmals durch Mitteldruckchromatographie (siehe Lit.¹⁾) mit Petrolether/ Essigester, 9:1, getrennt.

 $(1\alpha,4\alpha,4\alpha\alpha,5\alpha\alpha)-4,4a,5,5a$ -Tetrahydro-6,6-dimethyl-1,4-methano-1H-cyclopropa[d]pyridazin (10a): Nach Kugelrohrdestillation (30°C/0.01 Torr) 87 mg (10%) 10a vom Schmp. 26.5 – 27°C. – IR (CCl₄): 3000 cm⁻¹, 2980, 2940, 2920, 2900, 2880 (C – H), 1480, 1465 (N = N), 1385, 1370 [C(CH₃)₂], 1270, 1240, 1210. – UV (*n*-Hexan): $\lambda_{max}(\varepsilon) = 350$ nm (219), 342 (121), 336 (sh; 71), 316 (sh; 30). – ¹H-NMR (400.1 MHz; CDCl₃): $\delta = 0.14$ (dt; $J_{4a,5'} = J_{5',5a} = 2.9$ Hz, $J_{5',5'} = 5.8$ Hz; 1 H, 5'-H), 0.75 (dt; $J_{4a,5''} = J_{5',5a} = 7.6$ Hz; 1 H, 5''-H), 0.76 (s; 3 H, 6-exo-CH₃), 1.19 (s; 3 H, 6-endo-CH₃), 1.53 (dddd; 2 H, 4a-, 5a-H), 4.59 (dd; 1-, 4-H, $J_{1,5a} = J_{1,4a} = 2$ Hz). – ¹³C-NMR (100.6 MHz; CDCl₃): $\delta = 9.48$ (d; C-4a, -5a), 16.58 (t; C-5), 18.16 (q; exo-CH₃-6), 19.93 (q; endo-CH₃-6), 72.06 (s; C-6), 83.65 (d; C-1, -4). – MS (70 eV): m/z (%) = 108 (7) [M⁺ – N₂], 93 (100) [M⁺ – N₂, – CH₃), 78 (7) [M⁺ – N₂, – 2CH₃].

 $\begin{array}{cccc} C_8 H_{12} N_2 \mbox{ (136.2)} & \mbox{Ber. C } 70.55 \mbox{ H } 8.88 \mbox{ N } 20.57 \\ & \mbox{Gef. C } 70.65 \mbox{ H } 9.04 \mbox{ N } 20.84 \end{array}$

 $(1\alpha,4\alpha,4\alpha\alpha,5\alpha\alpha)-4,4\alpha,5,5a$ -Tetrahydro-1,4,6,6-tetramethyl-1,4-methano-1H-cyclopropa[d]pyridazin (10b): 76 mg (7%) 10b vom Schmp. 47–48°C. – IR (CCl₄): 3000 cm⁻¹, 2980, 2940, 2880 (C–H), 1495, 1470, 1460, 1440 (N = N), 1390, 1380 [C(CH₃)₂], 1370, 1330, 1290, 1230, 1200. – UV (*n*-Hexan): λ_{max} (ε) = 358 nm (192), 346 (sh; 108), 337 (sh; 88). – ¹H-NMR (400.1 MHz; CDCl₃): δ = 0.28 (dt; $J_{4a,5'} = J_{5',5a} = 2.9$ Hz, $J_{5',5''} = 6.1$ Hz; 1H, 5'-H), 0.46 (s; 3H, 6-exo-CH₃), 0.72 (dt; $J_{4a,5''} = J_{5'',5a} = 7.5$ Hz; 1H, 5'' -H), 0.96 (s; 3H, 6-endo-CH₃), 1.26 (dd; 2H, 4a-, 5a-H), 1.60 (s; 6H, 1-, 4-CH₃). – ¹³C-NMR (100.6 MHz; CDCl₃): δ = 12.64 (q; 2 CH₃), 15.60 (d; C-4a, -5a), 16.55 (t; C-5), 17.39 (q; 2 CH₃), 72.76 (s; C-6), 88.31 (s; C-1, -4). – MS (70 eV): m/z (%) = 164 (3) [M⁺], 149 (3) [M⁺ – CH₃], 134 (10) [M⁺ – 2CH₃], 136 (5) [M⁺ – N₂], 121 (100).

 $\begin{array}{c} C_{10}H_{16}N_2 \mbox{ (164.3)} & \mbox{Ber. C 73.13 } H \mbox{ 9.82 } N \mbox{ 17.06} \\ & \mbox{Gef. C 73.38 } H \mbox{ 9.65 } N \mbox{ 17.12} \end{array}$

(1a,4a,4aa,6aa)-1,4,4a,5,6,6a-Hexahydro-7,7-dimethyl-1,4-methanocvclobuta/d/pyridazin (11a): Zur Erzeugung des Cyclobutens²³⁾ werden unter N2-Schutzgas und Rühren 3.40 g (15.0 mmol) Cyclobutyltosylat in 10 ml DMSO innerhalb von 10 min zu 4.2 g (37 mmol) Kalium-tert-butylat in 60 ml DMSO bei 70°C getropft. Das entweichende Gas (am Schluß auf 90°C erhitzen) wird in einen Kleinautoklaveneinsatz eingeleitet, der 500 mg 1_{tri} (= 5.22 mmol 1), 3 ml Benzol und 1.20 ml (16 mmol) TFA enthält und mit Trokkeneis/Ethanol gekühlt ist. Man verschließt den Autoklaven mit Einsatz bei tiefer Temperatur und rührt 16 h bei Raumtemperatur. Dann tropft man die Mischung auf eiskalte K₂CO₃-Lösung, trennt die org. Phase ab, trocknet mit K₂CO₃ und sublimiert nach Abziehen des Solvens den Rückstand bei 25°C/0.01 Torr; Ausb. 500 mg (64%) **11a** vom Schmp. $56-57^{\circ}$ C. – IR (CCl₄): 2980 cm⁻¹, 2940, 2900, 2870, 2840 (C-H), 1490, 1470, 1450, 1440, 1430 (N = N), 1390, 1375 [C(CH₃)₂], 1295, 1280, 1255, 1250, 1230, 1200. - UV (n-Hexan): λ_{max} (ϵ) = 358 nm (251), 348 (123), 338 (sh; 56), 325 (25), 316 (sh; 10). - ¹H-NMR (400.1 MHz; CDCl₃): $\delta = 0.59$ (s; 3H, 7-exo-CH3), 0.67 (s; 3H, 7-endo-CH3), 1.35 (m; 2H), 1.64 (m; 2H) (5-,6-H), 2.76 (m_c; 2H, 4a-, 6a-H), 4.62 (dd; 2H, 1-, 4-H, $J_{1,6a} = J_{1,4a} =$ 2Hz). - ¹³C-NMR (100.6 MHz; CDCl₃): δ = 16.82 (t; C-5, -6), 17.53 (q; exo-CH₃-7), 19.16 (q; endo-CH₃-7), 36.87 (d; C-4a, -6a), 57.38 (s; C-7), 86.55 (d; C-1, -4). - MS (70 eV): m/z (%) = 107 (16) $[M^+ - N_2, - CH_3]$, 94 (36), 93 (10), 91 (18), 79 (100).

$\begin{array}{cccc} C_{9}H_{14}N_{2} \mbox{ (150.2)} & \mbox{Ber. C 71.96 } H \mbox{ 9.39 } N \mbox{ 18.65} \\ & \mbox{Gef. C 71.63 } H \mbox{ 9.39 } N \mbox{ 19.12} \end{array}$

Allgemeine Arbeitsvorschrift für die Reaktion von 1_{tri} mit Dienophilen: 500 mg (1.74 mmol) 1_{tri} (= 5.22 mmol 1) werden in 4.00 ml Chloroform gelöst. Nach Zugabe von 1.20 ml (1.78 g; 15.6 mmol) TFA entstehen zwei Phasen. Nun wird auf 0°C abgekühlt und unter Rühren das frisch destillierte Dienophil (≥ 1 Äquivalent, bezogen auf 1) zugegeben. Es wird so lange bei 0°C bzw. Raumtemperatur gerührt, bis das Reaktionsgemisch einphasig ist und ein ¹H-NMR-Spektrum bestätigt, daß 1_{tri} vollständig reagiert hat. Das Reaktionsgemisch wird zur Aufarbeitung auf eiskalte, gesättigte K₂CO₃-Lösung (4 ml) getropft. Nach Beendigung der Gasentwicklung wird die organische Phase abgetrennt. Die wäßrige Phase wird nochmals mit wenig Chloroform ausgeschüttelt. Die vereinigten organischen Phasen werden mit K₂CO₃ getrocknet, das Lösungsmittel sowie überschüssiges Dienophil im Vakuum entfernt, und das Rohprodukt wird gereinigt.

 $(1\alpha,4\alpha,4\alpha\alpha,7\alpha\alpha)$ -4,4a,5,6,7,7a-Hexahydro-8,8-dimethyl-1,4-methano-1 H-cyclopenta[d]pyridazin (12a): Mit 400 mg (5.87 mmol) Cyclopenten (5) 5 h bei Raumtemperatur. Nach Sublimation (50°C/ 0.05 Torr) 570 mg (66%) 12a vom Schmp. 44-45°C. – IR (CCl₄): 2950 cm⁻¹, 2880 (C-H), 1470, 1455 (N=N), 1390, 1375 [C(CH₃)₂]. – UV (n-Hexan): λ_{max} (ε) = 357 nm (215). – ¹H-NMR (400.1 MHz; CDCl₃): δ = 0.60 (s; 3H, 8-exo-CH₃). 0.98 (s; 3H, 8endo-CH₃), 1.26 (dt; 1H, J = 7.5 Hz, J = 12Hz), 1.38 (dt, 1H), 1.45 (dt; 4H) (5-, 6-, 7-H), 2.78 (m_{c} ; 2H, 4a, 7a-H), 4.70 (br. s; 2H, 1-, 4-H). $-^{13}$ C-NMR (100.6 MHz; CDCl₃): $\delta = 19.02$ (q; exo-CH₃-8), 19.53 (q; endo-CH₃-8), 25.71 (t; C-6), 28.54 (t; C-5, -7), 44.21 (d; C-4a, -7a), 58.32 (s; C-8), 87.95 (d; C-1, -4). - MS (70 eV): m/z (%) = 149 (2) [M⁺ - CH₃], 107 (100), 93 (58).

$\begin{array}{cccc} C_{10}H_{16}N_2 \mbox{ (164.3)} & \mbox{Ber. C 73.13 } H \mbox{ 9.82 } N \mbox{ 17.06} \\ & \mbox{Gef. C 72.89 } H \mbox{ 9.86 } N \mbox{ 17.03} \end{array}$

 $(1\alpha,4\alpha,4\alpha\alpha,8\alpha\alpha)$ -1,4,4a,5,6,7,8,8a-Octahydro-9,9-dimethyl-1,4-methanophthalazin (13a): Mit 500 mg (6.08 mmol) Cyclohexen (6), 1 d bei Raumtemperatur. Nach Kugelrohrdestillation (70°C/0.01 Torr) 425 mg (46%) 13a vom Schmp. 67–68°C. – IR (CCl₄): 2980 cm⁻¹, 2920, 2850 (C–H), 1480, 1470–1430 (N=N), 1390, 1370 [C(CH₃)₂], 1360, 1340, 1320, 1300, 1285, 1270, 1210. – UV (*n*-Hexan): λ_{max} (ε) = 358 nm (229), 347 (120), 342 (sh; 102), 326 (sh; 35). – ¹H-NMR (400.1 MHz; CDCl₃): δ = 0.69 (s; 3H, 9-exo-CH₃), 0.92 (m; 2H), 1.01 (s; 3H, 9-endo-CH₃), 1.19 (m; 2H), 1.52 (m; 4H) (5-, 6-, 7-, 8-H), 2.22 (m; 2H, 4a-, 8a-H), 4.70 (d; 2H, 1-, 4-H, J = 0.7 Hz). – ¹³C-NMR (100.6 MHz; CDCl₃): δ = 18.74 (q; exo-CH₃-9), 19.64 (q; endo-CH₃-9), 19.94 (t; C-6, -7), 20.03 (t; C-5, -8), 36.51 (d; C-4a, -8a), 53.31 (s; C-9), 88.28 (d; C-1, -4). – MS (70 eV): m/z (%) = 178 (0.3) [M⁺], 150 (3) [M⁺ – N₂], 135 (100) [M⁺ – N₂, – CH₃].

$\begin{array}{rl} C_{11}H_{18}N_2 \mbox{ (178.3)} & \mbox{Ber. C 74.11} & \mbox{H 10.18} & \mbox{N 15.71} \\ & \mbox{Gef. C 74.06} & \mbox{H 10.20} & \mbox{N 15.77} \end{array}$

 $(1\alpha,4\alpha,4\alpha\alpha,9\alpha\alpha)-4,4\alpha,5,6,7,8,9,9a-Octahydro-10,10-dimethyl-1,4$ methano-1 H-cyclohepta[d]pyridazin (14a): Mit 530 mg (5.50 mmol) Cyclohepten (7) 1 d bei Raumtemperatur. Nach Sublimation (80°C/ 0.01 Torr) 550 mg (55%) 14a vom Schmp. 98–99°C. – IR (CCl₄): 2990 cm⁻¹, 2980, 2940, 2920, 2860 (C–H), 1490, 1465, 1450 (N=N), 1395, 1380 [C(CH₃)₂], 1360, 1300, 1230. – UV (n-Hexan): λ_{max} (ϵ) = 355 nm (201), 344 (110), 340 (sh; 96), 322 (sh; 32). – ¹H-NMR (400.1 MHz; CDCl₃): δ = 0.66 (s; 3 H, 10-exo-CH₃), 1.00 (m; 6 H), 1.06 (s; 3 H, 10-endo-CH₃), 1.84 (m; 4 H) (5-, 6-, 7-, 8-, 9-H), 2.39 (m; 2H, 4a-, 9a-H), 4.65 (br. s; 2H, 1-, 4-H). – ¹³C-NMR (100.6 MHz; CDCl₃): δ = 18.99 (q; exo-CH₃-10), 19.53 (q; endo-CH₃-10), 26.12 (t; C-6, -8), 27.75 (t; C-5, -9), 30.30 (t; C-7), 30.93 (d; C-4a, -9a), 42.89 (s; C-10), 91.06 (d; C-1, -4). – MS (70 eV): m/z (%) = 164 (4) [M⁺ - N₂], 149 (80) [M⁺ - N₂, - CH₃], 135 (5) [M⁺ - N₂, -2CH₃], 107 (100).

$\begin{array}{c} C_{12}H_{20}N_2 \mbox{ (192.3)} & \mbox{Ber. C } 74.95 \mbox{ H } 10.48 \mbox{ N } 14.57 \\ & \mbox{Gef. C } 75.51 \mbox{ H } 10.30 \mbox{ N } 14.53 \end{array}$

 $(1\alpha,4\alpha,4\alpha\alpha,10\alpha\alpha)-1,4,4\alpha,5,6,7,8,9,10,10a$ -Decahydro-11,11-dimethyl-1,4-methanocycloocta[d]pyridazin (15a): Mit 610 mg (5.50 mmol) cis-Cycloocten (cis-8) bei Raumtemperatur. Nach Sublimation (90°C/0.01 Torr) 645 mg (60%) **15a** vom Schmp. 120–121°C. – IR (CCl₄): 3000 cm⁻¹, 2980, 2970, 2940, 2860 (C–H), 1490, 1470, 1450 (N=N), 1390, 1375 [C(CH₃)₂], 1365, 1350, 1290, 1250, 1200. – UV (n-Hexan): λ_{max} (ϵ) = 356 nm (209), 351 (144), 344 (118), 322 (sh; 37). – ¹H-NMR (400.1 MHz; CDCl₃): δ = 0.63 (s; 3 H, 11-exo-CH₃), 1.06 (s; 3 H, 11-endo-CH₃), 0.90–1.40 (m; 8 H), 1.56 (m; 2 H), 1.79 (m; 2 H) (5-, 6-, 7-, 8-, 9-, 10-H), 2.20 (m_c; 2 H, 4a-, 10a-H), 4.66 (br. s; 2 H, 1-, 4-H). – ¹³C-NMR (100.6 MHz; CDCl₃): δ = 19.04 (q; 2 C, CH₃-11), 25.03 (t; C-7, -8), 26.02 (t; C-6, -9), 31.18 (t; C-5, -10), 41.46 (d; C-4a, -10a), 52.51 (s; C-11), 93.30 (d; C-1, -4). – MS (70 eV): m/z (%) = 178 (4) [M⁺ – N₂], 163 (34) [M⁺ – N₂, – CH₃], 107 (100).

 $\begin{array}{c} C_{13}H_{22}N_2 \mbox{ (206.3)} & \mbox{Ber. C } 75.67 \mbox{ H } 10.75 \mbox{ N } 13.58 \\ & \mbox{Gef. C } 75.72 \mbox{ H } 11.02 \mbox{ N } 14.03 \end{array}$

 $(1\alpha,4\alpha,4\alpha\alpha,10\alpha\beta)$ -1,4,4 $\alpha,5,6,7,8,9,10,10a$ -Decahydro-11,11-dimethyl-1,4-methanocycloocta[d]pyridazin (16a): Allgemeine Arbeitsweise, jedoch 300 mg 1_{tri} (= 3.12 mmol 1), 2.50 ml CHCl₃, 0.33 ml (4.30 mmol) TFA, 1.36 g (12.9 mmol) trans-Cycloocten, gaschrom. rein. Laut DC (SiO₂; Petrolether/tert-Butylmethylether, 1:1) ist die Reaktion nach 10 min bei Raumtemperatur beendet. 1.91 g Rohprodukt liefern nach Kugelrohrdestillation (150°C/0.05 Torr) 331 mg (73%) weitgehend reines 16a. Dieses fällt nach Mitteldruckchromatographie (Petrolether/Essigester, 8:2) und Kugelrohrdestillation (150°C/0.05 Torr) als farbloses Öl an; Ausb. 260 mg (58%) 16a. – IR (CCl₄): 2980 cm⁻¹, 2920, 2850 (C-H), 1480, 1470-1430 (N=N), 1390, 1370 [C(CH₃)₂], 1360, 1340, 1320, 1300, 1285, 1270, 1210. – UV (n-Hexan): λ_{max} (ϵ) = 351 nm (107), 348 (sh; 77), 340 (73), 320 (sh; 28). - ¹H-NMR (400.1 MHz; CDCl₃): $\delta = 0.70$ (s; 3H, 11-exo-CH₃), 1.09 (s; 3H, 11-endo-CH₃), 0.75 (m; 1 H), 0.94 (m_c; 1 H), 1.10-1.75 (m; 12 H) (5-, 6-, 7-, 8-, 9-, 10-H), 1.85 (mc; 1 H, 10a-H), 2.26 (mc; 1 H, 4a-H), 4.35 (br. s; 1 H, 4-H), 4.61 (dd; 1 H, 1-H). - ¹³C-NMR (100.6 MHz; CDCl₃): $\delta = 19.68$ (q; *exo*-CH3-11), 20.66 (q; endo-CH3-11), 25.14 (t), 26.11 (t), 26.91 (t), 28.32 (t), 30.63 (t), 32-38 (t) (C-5, -6, -7, -8, -9, -10), 39.91 (d), 40.00 (d) (C-4a, -10a), 52.98 (s; C-11), 89.54 (d), 91.05 (d) (C-1, -4). - MS (70 eV): m/z (%) = 178 (3) [M⁺ - N₂], 163 (34) [M⁺ - N₂, - CH₃], 107 (100).

(1α,4α,4αα,8αα)-1,4,4α,5,8,8α-Hexahydro-9,9-dimethyl-1,4-methanophthalazin (**22a**): Mit 434 mg (5.42 mmol) 1,4-Cyclohexadien (**18**). Nach 7 d bei Raumtemp. wird die noch immer zweiphasige Mischung aufgearbeitet. Kugelrohrdestillation (25°C/0.01 Torr) liefert 48 mg (5%) **22a** als farbloses Öl. – IR (CCl₃): 3030 cm⁻¹ (= C – H), 2970, 2920, 2900, 2850, 2840 (– C – H), 1490, 1460, 1450 (N = N), 1390, 1370 [C(CH₃)₂], 1280, 1240. – UV (*n*-Hexan): λ_{max} (ε) = 362 nm (200), 351 (sh, 93), 346 (73), 328 (13). – ¹H-NMR (400.1 MHz; CDCl₃): δ = 0.68 (s; 3H, 9-exo-CH₃), 1.06 (s; 3H, 9-endo-CH₃), 1.87 (m_c; 2H, 5'-, 8'-H), 2.20 (m_c; 2H, 5''-, 8''-H), 2.60 (m_c; 2H, 4a-, 8a-H), 4.72 (m_c; 2H, 1-, 4-H), 5.67 (m_c; 2H, 6-, 7-H). – ¹³C-NMR (100.6 MHz; CDCl₃): δ = 18.98 (q; exo-CH₃-9), 19.73 (q; endo-CH₃-9), 23.25 (t; C-5, -8), 36.96 (d; C-4a, -8a), 53.53 (s; C-9), 87.31 (d; C-1, -4), 127.62 (d; C-6, -7).

```
\begin{array}{c} C_{11}H_{20}N_2 \ (180.3) \\ Gef. \ C \ 74.96 \ H \ 9.15 \ N \ 15.89 \\ Gef. \ C \ 74.91 \ H \ 9.22 \ N \ 16.13 \end{array}
```

 $(1\alpha,4\alpha,4\alpha\alpha,10\alpha\alpha)$ -1,4,4 $\alpha,5,6,9,10,10a$ -Octahydro-11,11-dimethyl-1,4-methanocycloocta[d]pyridazin (23a) und $(1\alpha,4\alpha,4\alpha\alpha,6\alpha\alpha,7\alpha,$ $10\alpha,10\alpha\alpha,12\alpha\alpha)$ -1,4,4 $\alpha,5,6,6\alpha,7,10,10\alpha,11,12,12a$ -Dodecahydro-13,13, 14,14-tetramethyl-1,4:7,10-dimethanocycloocta[1,2-d:5,6-d']dipyridazin (24a): Mit 584 mg (5.40 mmol) 1,5-Cyclooctadien (19) 1 d bei Raumtemp. Das Rohprodukt wird in Petrolether/Essigester (8:2) aufgenommen und das unlösliche 24a abgetrennt, das rohe 24a in Chloroform gelöst, über eine 1-cm-Schicht Kieselgel filtriert und das Solvens abgezogen. Es verbleiben 78 mg (7%) 24a vom Schmp. 279-280°C (Zers.). Das Filtrat liefert nach Abziehen des Solvens festes 23a. Sublimation (30°C/0.01 Torr) liefert 176 mg (16%) 23a vom Schmp. 43-44°C.

23a: IR (CCl₄): 3020 cm⁻¹ (=C-H), 2970, 2935, 2915, 2880 (-C-H), 1495, 1470, 1455 (N=N), 1400, 1380 [C(CH₃)₂], 1300, 1235. – UV (*n*-Hexan): λ_{max} (ε) = 356 nm (162), 344 (98), 322 (sh, 31). – ¹H-NMR (400.1 MHz; CDCl₃): δ = 0.62 (s; 3H, 11-*exo*-CH₃), 1.02 (s; 3H, 11-*endo*-CH₃), 1.47 (m; 2H), 1.95 (m; 4H), 2.23 (m; 2H) (5-, 6-, 9-, 10-H), 2.45 (m; 2H, 4a-, 10a-H), 4.65 (br. s; 2H, 1-, 4-H), 5.66 (m; 2H, 7-, 8-H). – ¹³C-NMR (100.6 MHz; CDCl₃): δ = 19.01 (q; *exo*-CH₃-11), 19.32 (q; *endo*-CH₃-11), 25.98 (t; C-5, -10), 27.71 (t; C-6, -9), 41.27 (d; C-4a, -10a), 53.71 (s; C-11), 91.68 (d; C-1, -4), 131.69 (d; C-7, -8). – MS (70 eV): *m/z* (%) = 161 (32) [M⁺ - N₂, - CH₃], 107 (100).

$$C_{13}H_{20}N_2$$
 (204.3) Ber. C 76.42 H 9.87 N 13.71
Gef. C 75.86 H 9.96 N 14.09

24a: IR (CCl₄): 2980 cm⁻¹, 2940, 2920, 2880 (-C-H), 1490, 1470, 1450, 1440 (N=N), 1395, 1375 [C(CH₃)₂], 1300, 1230, 1150. – UV (*n*-Hexan): λ_{max} (ϵ) = 354 nm (214), 345 (sh, 197). – ¹H-NMR (400.1 MHz; CDCl₃): δ = 0.59 (s; 6H, 13-, 14-*exo*-CH₃), 0.69 (m_c; 4H), 0.97 (s; 6H, 13-, 14-*endo*-CH₃), 1.94 (d; 4H), 2.31 (d; 4H, 4a-, 6a-, 10a-, 12a-H), 4.58 (br. s; 4H, 1-, 4-, 7-, 10-H). – ¹³C-NMR (100.6 MHz; CDCl₃): δ = 19.07 (q; *exo*-CH₃-13, -14), 19.18 (q; *endo*-CH₃-13, -14), 26.11 (t; C-5, -6, -11, -12), 42.12 (d; C-4a, -6a, -10a, -12a), 52.61 (s; C-13, -14), 91.72 (d; C-1, -4, -7, -10).

C₁₈H₂₈N₄ (300.4) Ber. C 71.96 H 9.38 N 18.65 Gef. C 72.22 H 9.28 N 17.98

 $(1\alpha,4\alpha,4\alpha\alpha,5\beta,8\beta,8\alpha\alpha)$ -1,4,4a,5,8,8a-Hexahydro-10,10-dimethyl-1,4:5,8-dimethanophthalazin (exo-**25a**) und $(1\alpha,4\alpha,4\alpha\alpha,5\alpha,8\alpha,8\alpha\alpha)$ -1,4,4a,5,8,8a-Hexahydro-10,10-dimethyl-1,4:5,8-dimethanophthalazin (endo-**25a**): Mit 479 mg (5.20 mmol) Norbornadien (**20**) 40 min bei Raumtemp. Nach Sublimation (60°C/0.05 Torr) 422 mg (43%) endo-**25a**²⁾ und exo-**25a**²⁾ im Verhältnis 1:3.3. Zur Trennung durch Mitteldruckchromatographie eignet sich Petrolether/Essigester (95:5). Die analytischen Daten stimmen mit denen in Lit.⁴⁾ beschriebenen überein.

 $(1\alpha, 4\alpha, 4\alpha\alpha, 5\beta, 10\beta, 10\alpha\alpha) - 1, 4, 4\alpha, 5, 10, 10a$ -Hexahydro-12, 12-dimethyl-1,4:5,10-dimethanobenzo[g]phthalazin (27a): Mit 780 mg (5.49 mmol) Benzonorbornadien (21), 1 d bei Raumtemp. Nach Mitteldruckchromatographie (Petrolether/Essigester, 8:2) und Sublimation (130°C/0.01 Torr) verbleiben 785 mg (63%) 27a vom Schmp. $122 - 123^{\circ}C. - IR (CCl_4): 3080 \text{ cm}^{-1}, 3060, 3020 (= C - H), 2980,$ 2940, 2880 (-C-H), 1465, 1455 (N=N), 1400, 1380 [C(CH₃)₂]. -UV (n-Hexan): λ_{max} (ϵ) = 358 nm (263), 272 (1047), 265 (933), 258 (603), 252 (398). - ¹H-NMR (400.1 MHz; CDCl₃): $\delta = 0.70$ (s; 3 H, 12-exo-CH₃), 0.93 (s; 3H, 12-endo-CH₃), 1.21 (m; 1H), 2.18 (m; 1H) (11-H), 2.40 (s; 2H, 4a-, 10a-H), 3.30 (s; 2H, 5-, 10-H), 4.82 (s; 2H, 1-, 4-H), 7.05 (AA'BB', 4H, 6-, 7-, 8-, 9-H). - ¹³C-NMR (100.6 MHz; CDCl₃): $\delta = 19.47$ (q; exo-CH₃-12), 19.66 (q; endo-CH₃-12), 44.23 (d; C-4a, -10a), 46.44 (d; C-5, -10), 60.51 (s; C-12), 86.37 (d; C-1, -4), 120.09 (d; C-7, -8), 125.63 (d; C-6, -9), 150.75 (s; C-5a, -9a). - MS (70 eV): m/z (%) = 195 (2) [M⁺ - N₂, -CH₃], 180 (2) [M⁺ - N_2 , - 2 CH₃], 116 (100).

$$\begin{array}{c} C_{16}H_{18}N_2 \mbox{ (238.3)} & \mbox{Ber. C } 80.65 \mbox{ H } 7.61 \mbox{ N } 11.76 \\ & \mbox{Gef. C } 80.98 \mbox{ H } 7.75 \mbox{ N } 11.38 \end{array}$$

Umsetzung von 2 mit cis-8: 500 mg (4.03 mmol) 2, 2.70 g (16.3 mmol) cis-8 und 0.50 ml (6.33 mmol) TFA in 5.0 ml CHCl₃ werden bei Raumtemp. gerührt. Nach 3 d bei Raumtemp. ist noch keine Reaktion festzustellen (1 H-NMR).

Umsetzung von 2 mit trans-8. – $(1\alpha,4\alpha,4\alpha\alpha,10\alpha\beta)$ -1,4,4a,5,6,7,8, 9,10,10a-Decahydro-1,4,11,11-tetramethyl-1,4-methanocycloocta-[d]pyridazin (16b): 500 mg (4.03 mmol) 2 und 436 mg (4.03 mmol) trans-8 werden in 5.0 ml CHCl₃ nach Zugabe von wenig K₂CO₃ 2 d unter Rückfluß erhitzt. Nach Filtration wird das Solvens abgezogen und der feste Rückstand sublimiert (40°C/0.05 Torr). Man erhält 470 mg (50%) 16b vom Schmp. 50-51°C.

Die gleiche Reaktion ist in Gegenwart von 0.50 ml (6.33 mmol) TFA in 2 d bei Raumtemp. beendet; 450 mg (48%) **16b** vom Schmp. $50-51^{\circ}$ C. – IR (CCl₄): 3000 cm⁻¹, 2980, 2880 (–C–H), 1500 1465, 1450 (N=N), 1395, 1385 [C(CH₃)₂], 1295, 1215. – UV (*n*-Hexan): λ_{max} (ε) = 357 nm (107). – ¹H-NMR (90 MHz; CDCl₃): δ = 0.35 (s; 3 H, *exo*-CH₃-11), 0.77 (s; 3 H, *endo*-CH₃-11), 0.77 – 2.08 (m; 14H, C[CH₂]₆, 4a-, 10a-H), 1.40 (s; 3H, CH₃), 1.48 (s; 3 H, CH₃). – ¹³C-NMR (100.6 MHz; CDCl₃): δ = 10.52 (q; CH₃), 10.89 (q; CH₃), 17.62 (q; *exo*-CH₃-11), 17.88 (q; *endo*-CH₃-11), 24.14 (t), 25.14 (t), 26.87 (t), 27.72 (t), 28.02 (t), 29.73 (t) (C-5, -6, -7, -8, -9, -10), 43.31 (d), 43.91 (d) (C-4a, -19a), 55.38 (s; C-11), 90.42 (s), 91.45 (s) (C-1, -4). - MS (70 eV): m/z (%) = 206 (2) $[M^+ - N_2]$, 191 (100) $[M^+ - N_2, - CH_3]$.

Cycloadditionen unter hohem Druck: 124 mg (1.00 mmol) 4H-Pyrazol 2 werden in 1–10 mmol Dienophil gelöst, notfalls unter Zusatz von wenig Toluol, und in einem Teflongefäß bei 6.9-7.0kbar 17–256 h auf 100–140°C erhitzt. Überschüssiges Dienophil und das Solvens werden i. Vak. abgezogen. Das in wenig Chloroform gelöste Rohprodukt wird über eine kurze Kieselgelsäule filtriert und anschließend durch Mitteldruckchromatographie²⁴⁾ gereinigt (Säule 25 × 2.4 cm, Kieselgel Merck Si 60, 15–20 µm, ca. 7000 theor. Böden, Laufmittel Petrolether (30–75)/Essigsäureethylester, 9:1, Detektion bei 350–360 nm). Die fraktionierten Produkte werden durch Sublimation oder Kugelrohrdestillation bei 0.01 Torr rein erhalten.

 $(1\alpha,4\alpha,4\alpha\alpha,6\alpha\alpha)$ -1,4,4a,5,6,6a-Hexahydro-1,4,7,7-tetramethyl-1,4methanocyclobuta[d]pyridazin (11b): 70 µl (ca. 1 mmol) Cyclobutan (4) und 280 mg (2.3 mmol) 2 in 500 µl Toluol, 130°C, 18 h; 105 mg (59%) 11b, Reinigung durch Vakuum-Destillation (0.01 Torr, Badtemp. 60°C) und Gaschromatographie (3 m Apiezon, 130°C, Trägergas: He). Die ¹H-NMR-Daten stimmen mit denen in Lit.⁸⁾ überein.

 $(1\alpha,4\alpha,4\alpha\alpha,7\alpha\alpha)$ -4,4a,5,6,7,7a-Hexahydro-1,4,8,8-tetramethyl-1,4methano-1 H-cyclopenta[d]pyridazin (12b): 410 mg (6.02 mmol) Cyclopenten (5), 129°C, 256 h; Umsatz 90%; 146 mg (76%) 12b, farblose Kristalle vom Schmp. 33-34°C. Die ¹H-NMR-Daten stimmen mit denen in Lit.⁴) überein.

 $\begin{array}{c} C_{13}H_{22}N_2 \mbox{ (206.3)} & \mbox{Ber. C } 75.69 \mbox{ H } 10.75 \mbox{ N } 13.58 \\ \mbox{Gef. C } 75.80 \mbox{ H } 11.03 \mbox{ N } 13.45 \end{array}$

 $(1\alpha, 4\alpha, 4\alpha, 9\alpha\alpha) - 4, 4\alpha, 5, 6, 7, 8, 9, 9a$ -Octahydro-1, 4, 10, 10-tetramethyl-1, 4-methano-1 H-cyclohepta[d]pyridazin (14b): 460 mg (4.78 mmol) Cyclohepten (7), 129°C, 71 h; Umsatz > 90%; 156 mg (71%) 14b, farblose Kristalle vom Schmp. 45–46°C. – IR (CCl₄): 2980 cm⁻¹, 2960, 2920, 2860, 2840 (C–H), 1500, 1470, 1450 (N=N), 1400, 1380 [C(CH₃)₂]. – UV (n-Hexan): λ_{max} (ε) = 361 nm (178), 346 (sh; 89), 328 (sh; 25). – ¹H-NMR (400.1 MHz; CDCl₃): δ = 0.40 (s; 3 H, 10-exo-CH₃), 0.74 (s; 3 H, 10-endo-CH₃), 0.90 (m; 6 H), 1.85 (m; 4 H) (5-, 6-, 7-, 8-, 9-H), 1.57 (s; 6 H, 1-, 4-CH₃), 2.03 (m; 2H, 4a-, 9a-H). – ¹³C-NMR (100.6 MHz; CDCl₃): δ = 11.12 (q; CH₃-1, -4), 16.38 (q; exo-CH₃-10), 17.09 (q; endo-CH₃-10), 24.82 (t; C-7), 30.11 (t; C-6, -8), 30.96 (t; C-5, -9), 48.37 (d; C-4a, -9a), 56.02 (s; C-10), 91.56 (s; C-1, -4). – MS (70 eV): m/z (%) = 177 (100) [M⁺ - N₂, - CH₃], 163 (2) [M⁺ - N₂, - 2CH₃].

 $\begin{array}{c} C_{14}H_{24}N_2 \mbox{ (220.4)} & \mbox{Ber. C 76.30 H 10.98 N 12.71} \\ & \mbox{Gef. C 76.58 H 11.22 N 13.08} \end{array}$

 $(1\alpha,4\alpha,4a\alpha,10a\alpha)-1,4,4a,5,6,7,8,9,10,10a$ -Decahydro-1,4,11,11-tetramethyl-1,4-methanocycloocta[d]pyridazin (15b): 110 mg (1.00

mmol) Cycloocten (8), 131 °C, 119 h; Umsatz > 60%; 80 mg (70%, bezogen auf Umsatz) 15b, farblose Kristalle vom Schmp. 65 bis 66°C. – IR (CCl₄): 2990 cm⁻¹, 2960, 2920, 2840 (C – H), 1500, 1470, 1450 (N = N), 1395, 1380 [C(CH₃)₂], 1290. – UV (*n*-Hexan): $\lambda_{max} (\varepsilon) = 360$ nm (151), 345 (sh; 82), 327 (sh, 27). – ¹H-NMR (400.1 MHz; CDCl₃): $\delta = 0.41$ (s; 3H, 11-exo-CH₃), 0.77 (s; 3H, 11-endo-CH₃), 0.98 (m; 3H), 1.09 (m; 3H), 1.32 (m; 6H), 1.71 (m; 2H), 1.61 (s; 6H, 1-, 4-CH₃), 1.71 (m; 4H, 4a-, 10a-H) (5-, 6-, 7-, 8-, 9-, 10-H). – ¹³C-NMR (100.6 MHz; CDCl₃): $\delta = 11.27$ (q; CH₃-1, -4), 16.33 (q; exo-CH₃-11), 17.24 (q; endo-CH₃-11), 21.85 (t; C-7, -8), 26.14 (t; C-6, -9), 31.59 (t; C-5, -10), 47.64 (d; C-4a, -10a), 55.20 (s; C-11), 92.93 (s; C-1, -4). – MS (70 eV): m/z (%) = 206 (5) [M⁺ - N₂], 191 (100) [M⁺ - N₂, – CH₃].

$$\begin{array}{rrrr} C_{15}H_{26}N_2 \mbox{ (234.4)} & \mbox{Ber. C 76.87 H 11.18 N 11.95} \\ & \mbox{Gef. C 76.32 H 11.38 N 11.71} \end{array}$$

 $(1\alpha,4\alpha,4\alpha\alpha,5\beta,8\beta,8\alpha\alpha)$ -1,4,4a,5,6,7,8,8a-Octahydro-1,4,10,10-tetramethyl-1,4,5,8-dimethanophthalazin (17b): 470 mg (5 mmol) Norbornen (9) in 1 ml Toluol, 130°C, 24 h; Umsatz 100%; 190 mg (87%) 17b, farblose Kristalle nach Sublimation (0.1 Torr, Badtemp. 80°C). Die ¹H-NMR-Daten stimmen mit denen in Lit.²⁵⁾ überein.

 $(1\alpha, 4\alpha, 4\alpha, 8\alpha\alpha)$ -1,4,4a,5,8,8a-Hexahydro-1,4,9,9-tetramethyl-1,4methanophthalazin (22b): 300 mg (3.75 mmol) 1,4-Cyclohexadien (18), 129°C, 256 h; Umsatz > 90% (z. T. Zersetzung); 65 mg (30%) 22b als farbloses Öl. – ¹H-NMR (400.1 MHz; CDCl₃): δ = 0.45 (s; 3H, 9-exo-CH₃), 0.80 (s; 3H, 9-endo-CH₃), 1.63 (s; 6H, 1-, 4-CH₃), 1.95 (m; 2H), 2.20 (m; 2H) (5-, 8-H), 2.30 (m; 4a-, 8a-H), 5.72 (m_c; 2H, 6-, 7-H). – ¹³C-NMR (100.6 MHz; CDCl₃): δ = 11.12 (q; CH₃-1, -4), 16.06 (q; [CH₃]₂-9), 21.58 (t; C-5, -8), 42.54 (d; C-4a, -8a), 56.18 (s; C-9), 89.20 (s; C-1, -4), 127.62 (d; C-6, -7).

 $\begin{array}{rrrr} C_{13}H_{20}N_2 \mbox{ (204.3)} & \mbox{Ber. C 76.42 H } 9.87 \ N \ 13.71 \\ & \mbox{Gef. C 75.68 H } 11.21 \ N \ 13.70 \end{array}$

 $(1\alpha,4\alpha,4\alpha\alpha,10\alpha\alpha)$ -1,4,4a,5,6,9,10,10a-Octahydro-1,4,11,11-tetramethyl-1,4-methanocycloocta[d]pyridazin (23b) und $(1\alpha,4\alpha,4\alpha\alpha,6\alpha\alpha,7\alpha,10\alpha,10\alpha,12\alpha\alpha)$ -1,4,4a,5,6,6a,7,10,10a,11,12,12a-Dodecahydro-1,4,7,10,13,13,14,14-octamethyl-1,4:7,10-dimethanocycloocta-[1,2-d:5,6-d']dipyridazin (24b): 108 mg (1.00 mmol) 1,5-Cyclooctadien (19), 129°C, 119 h; Umsatz > 60%. – Das in Toluol schwerlösliche 24b wird abgetrennt. 130 mg (36%) 24b, farblose Kristalle vom Schmp. 258 – 259°C. Das Filtrat wird über eine kurze Kieselgelsäule (1 cm) gepreßt und mit Chloroform nachgewaschen. Das eingeengte Filtrat liefert nach Mitteldruckchromatographie und Sublimation 10 mg (4%) 23b vom Schmp. 79 – 80°C.

23b: IR (CCl₄): 3020 cm⁻¹ (=C-H), 2960, 2940, 2900, 2860 (-C-H), 1480-1450 (N=N), 1390, 1380 [C(CH₃)₂], 1280. – UV (*n*-Hexan): λ_{max} (ε) = 355 nm (122), 350 (sh; 69). – ¹H-NMR (400.1 MHz; CDCl₃): δ = 0.41 (s; 11-*exo*-CH₃), 0.75 (s; 3H, 11-*endo*-CH₃), 1.47 (m; 2H), 1.61 (s; 6H, 1-, 4-CH₃) 2.00 (m; 4H), 2.11 (m; 2H) (5-, 6-, 9-, 10-H), 2.28 (m; 2H, 4a-, 10a-H), 5.67 (m_c; 2H, 7-, 8-H). – ¹³C-NMR (100.6 MHz; CDCl₃): δ = 11.12 (q; CH₃-1, -4), 16.40 (q; *exo*-CH₃-11), 17.27 (q; *endo*-CH₃-11), 25.00 (t; C-5, -10), 26.21 (t; C-6, -9), 46.85 (d; C-4a, -10a), 56.15 (s; C-11), 92.23 (s; C-1, -4), 131.80 (d; C-7, -8).

$\begin{array}{r} C_{15}H_{24}N_2 \mbox{ (232.4)} & \mbox{Ber. C 77.53 H 10.41 N 12.06} \\ & \mbox{Gef. C 77.16 H 10.86 N 11.84} \end{array}$

24b: IR (CCl₄): 2990 cm⁻¹, 2960, 2930, 2900, 2870 (-C-H), 1500, 1470, 1450 (N=N), 1395, 1380 [C(CH₃)₂], 1280. - ¹H-NMR (400.1 MHz; CDCl₃): $\delta = 0.37$ (s; 6H, *exo*-CH₃), 0.54 (m_c; 4H), 0.69 (s; 6H, *endo*-CH₃), 1.56 (s; 12H, CH₃), 2.00 (m_c; 8H). - ¹³C-NMR (100.6 MHz; CDCl₃): $\delta = 11.13$ (q; 4 CH₃), 16.16 (q; 2C, *exo*-CH₃),

16.40 (q; 2C, endo-CH₃), 23.09 (t; 4C, CH₂), 49.13 (d; 4C, CH), 55.32 (s; 2C, CMe₂), 92.11 (s; 4C, C-Me).

$\begin{array}{rrrr} C_{22}H_{36}N_4 \ (356.6) & \mbox{Ber. C } 74.11 \ \ H \ 10.19 \ \ N \ 15.71 \\ & \mbox{Gef. C } 73.82 \ \ H \ \ 9.96 \ \ N \ 15.33 \end{array}$

(1α,4α,4aα,5β,8β,8aα)-1,4,4a,5,8,8a-Hexahydro-1,4,10,10-tetramethyl-1,4:5,8-dimethanophthalazin (exo-25b) und $(1\alpha,4\alpha,4\alpha\alpha,5\alpha,8\alpha,$ 8ax)-1,4,4a,5,8,8a-Hexahydro-1,4,10,10-tetramethyl-1,4:5,8-dimethanophthalazin (endo-25b) sowie $(1\alpha,4\alpha,4a\alpha,5\beta,5a\alpha,6\alpha,9\alpha,9a\alpha,$ 10\$,10aa)-1,4,4a,5,5a,6,9,9a,10,10a-Decahydro-1,4,6,9,12,12,13,13octamethyl-1,4:5,10:6,9-trimethanopyridazino[4,5-g]phthalazin (exo, exo-26b) und $(1\alpha, 4\alpha, 4\alpha\alpha, 5\alpha, 5\alpha\alpha, 6\alpha, 9\alpha, 9\alpha\alpha, 10\alpha, 10\alpha\alpha)$ -1,4,4a,5,5a,6,9,9a,10,10a-Decahydro-1,4,6,9,12,12,13,13-octamethyl-1,4:5,10:6,9-trimethanopyridazino[4,5-g]phthalazin (endo,exo-26b): a) 8.10 g (65.3 mmol) 4H-Pyrazol 2 in 8.90 g (96.7 mmol) Norbornadien (20) werden in einem Teflongefäß bei 6.9-7.0 kbar 56 h auf 130°C erhitzt. Überschüssiges Norbornadien (20) wird i. Vak. entfernt. Das in wenig Dichlormethan gelöste Rohprodukt wird durch Blitzchromatographie (Säule 40×3 cm, Alumina B, Akt. I, ICN, Laufmittel Petrolether (Sdp. 30-75°C)/Essigsäure-ethylester, 5:1) getrennt. Man erhält als 1. Fraktion 11.4 (81%) exo-25b und als 2. Fraktion 151 mg (1%) endo-25b. Die ¹H-NMR-Daten stimmen mit denen in Lit.4) überein. Als 3. Fraktion werden 1.63 g (7%) exo, exo-**26b** isoliert, das durch Sublimation bei 150°C/0.01 Torr gereinigt wird. Ab 235°C Zers. unter Gasentwicklung. - IR (KBr): 2995 cm^{-1} , 2960, 2870 (C-H), 1465, 1440, 1375, 1285. – UV (*n*-Hexan): λ_{max} (ϵ) = 364 nm (324). - ¹H-NMR (400.1 MHz; CDCl₃): δ = 2.30 (br. s, 5-H, 10-H), 1.64 (br. s, 4a-H, 5a-H, 9a-H, 10a-H), 1.62 (s, 12 H), 1.08 (br. s, 11-H, 11'-H), 0.78 (s, 6 H), 0.35 (s, 6 H). - ¹³C-NMR (200 MHz; CDCl₃): $\delta = 90.29$ (s, C-1, -4, -6, -9), 61.04 (s, C-13, -12), 55.38 (d, C-5, -10), 34.83 (d, C-4a, -5a, -9a, -10a), 31.54 (t, C-11), 17.46 (q, 2C), 15.43 (q, 2C), 12.45 (q, 4C). - MS (70 eV): m/z (%) = 270.4 (19.78), 269.4 (89.83) [M⁺ - N₂ - N₂ - CH₃], 161.2 (100.00) 147.3 (38.52), 123.1 (32.27), 107.2 (42.75), 91.1 (35.39). C21H23N4 (340.2) Ber. C 74.06 H 9.40 N 16.44

Gef. C 74.42 H 9.68 N 16.08

b) 250 mg (2.0 mmol) 2 und 40 mg (0.4 mmol) 20 in 0.5 ml Toluol 130°C, 7 kbar 24 h; Umsatz an 20 > 95%. Die flüchtigen Bestandteile werden i. Vak. (0.1 Torr) bei Raumtemp. abdestilliert, und der Rückstand wird in CDCl₃ gelöst. GC-Analyse (Bedingungen nachstehend) ergibt für die Monoaddukte ein Verhältnis *exo-*25b:*endo*-25b > 166. Das ¹H-NMR-Spektrum (400 MHz, CDCl₃) zeigt ein Verhältnis *exo-*25b:*exo,exo-*26b:*endo,exo-*26b = 79:18:3. *endo, exo-*26b ließ sich mit Hilfe von HPLC (20-cm-Kieselgel-Säule, 7µ,

Tab. 2. Geschwindigkeitskonstanten der Diels-Alder-Reaktion von 2 mit Cycloalkenen in Toluol bei $(130.0\pm0.2)^{\circ}$ C und (9500 ± 40) bar

Au Dien [2] ₀	usgangskonzentrationen [mol/I] Cyclopenten	$k \cdot 10^6 [\mathrm{M}^{-1} \mathrm{s}^{-1}]$	Korrelations- koeff.
0.198 0.198 0.197 0.199 0.200 0.114 0.198 0.198	Cyclopenten $[5]_0 = 1.79$ Cyclohexen $[6]_0 = 2.04$ Cyclohepten $[7]_0 = 1.99$ <i>cis</i> -Cycloocten [<i>cis</i> -8]_0 = 2.00 Norbornen [9]_0 = 2.02 Norbornadien [20]_0 = 2.31 Cyclopenten $[5]_0 = 1.79$ Cyclohexen $[6]_0 = 2.04$	$\begin{array}{c} (6.80 \pm 0.11) \\ (1.60 \pm 0.02) \\ (6.46 \pm 0.11) \\ (7.10 \pm 0.15) \\ (8.24 \pm 0.16) \\ (12.34 \pm 0.72) \\ 1.04^{a)} \\ 0.202^{a)} \end{array}$	0.9996 0.9998 0.9997 0.9996 0.9996 0.9996

^{a)} bei (3000 ± 50) bar und $(130.1 \pm 0.2)^{\circ}$ C. Die Geschwindigkeitskonstante k wurde jeweils nur aus dem Umsatz bei einer Reaktionszeit berechnet. Druck: 325 psi, Laufmittel: Pentan/Methyl-*tert*-Butylether, 9:1) zu ca. 60% neben 40% *exo*-**25b** anreichern. – ¹H-NMR (400 MHz; C₆D₆): $\delta = 0.22$ (s), 0.26 (s), 0.30 (s), 0.61 (s) (12-, 12-, 13-, 13-CH₃), 0.46 (dt, 11β-H, J_{11α,11β} = 11 Hz, J = 1 Hz); 1.35 (s), 1.62 (s) (1-, 4-, 6-, 9-CH₃); 1.48 (s, 5a-, 9a-H), 1.78 (dd, J = 3 Hz; J = 2 Hz), 2.19 (m) (4a-, 10a, 5-, 10-H); 2.32 (dt, 11α-H, J_{11α,11β} = 11 Hz, J = 2 Hz).

Kinetische Messungen. – a) Vergleich der Reaktivität von Cycloalkenen gegenüber 2: Lösungen von 2 mit den in Tab. 2 angegebenen Cycloalkenen in Toluol wurden jeweils für mindestens vier verschiedene Zeiten bei (9500±40) bar und $(130.0\pm0.2)^{\circ}$ C erhitzt. Der Umsatz von 2 (zwischen 4 und 75%; $t_R = 351$ s) wurde jeweils gaschromatographisch (40-m-Glaskapillarsäule: Siliconöl OV101, 135° C, Trägergas: N₂) gegen *n*-Dodecan als inneren Standard ($t_R =$ 399s) ermittelt. Durch eine Thermolyse von 2 ohne Cycloalken wurde sichergestellt, daß 2 unter den Reaktionsbedingungen stabil ist. Außerdem wurde für mehrere Thermolysemischungen überprüft, daß der gaschromatographisch ermittelte Umsatz von 2 mit dem ¹H-NMR-spektroskopisch bestimmten Verhältnis von 2 und dem jeweiligen Addukt übereinstimmt.

b) Druckabhängigkeit der Diels-Alder-Reaktion von 2 und Norbornadien (20): Aliquote Teile einer Lösung von 2 ([2]₀ = 0.115 mol/l) und Norbornadien ([20]₀ = 2.31 mol/l) werden bei (130.1 ± 0.2)°C und den in Tab. 3 angegebenen Drücken thermolysiert. Aus dem, wie in Versuch a), gaschromatographisch bestimmten Umsatz von 2 unter Berücksichtigung der jeweiligen Thermolysezeit und der Anfangskonzentrationen von 2 und 20, werden die in Tab. 3 aufgeführten spezifischen Geschwindigkeitskonstanten ermittelt. Das Aktivierungsvolumen wird mit Hilfe einer "leastsquare"-Analyse aller Werte mit der Funktion $\ln kp = a + bp + cp^2$; $\Delta V_0^* = -bRT$ bzw. der Werte im linearen Bereich von 1–2500 bar (Abb. 1) mit der Funktion $\ln kp = a_1 + a_2p$; $\Delta V^* = -a_2RT$ berechnet²⁶.

Tab. 3. Druckabhängigkeit der Geschwindigkeitskonstanten der Reaktion von 2 mit Norbornadien 20 in Toluol bei $(130.1 \pm 0.2)^{\circ}$ C

Druck [bar]	1	850	1230	1600	2090	2500	3100	4810	6690	9500
$\frac{k \cdot 10^7}{[M^{-1} s^{-1}]}$	0.514	1.17	2.05	3.54	7.29	11.0	15.9	33.9	54.9	123
$\Delta V_0^* = -$	(41 ± 1) cm ²	/mol.	- Δ	V* =	-(4	3±2)	cm ³ /r	nol.	

Tab. 4. Druck- und Temperaturabhängigkeit des Produktverhältnisses *endo-25b/exo-25b* bei der Reaktion von 2 ($[2]_0 = 0.115$ mol/l) mit 20 ($[20b]_0 = 2.31$ mol/l) in $[D_6]$ Toluol

Temp. Druck		¹ H-NMR	GC		
[°C] [bar]		exo- 25b : endo- 25b	exo- 25b : endo- 25b		
130	2500	97:3	98:2		
	4810	96:4	97:3		
110	9500	98:2	97:3		
	9500	97:3	98:2		

Mittelwert: exo-25b: $endo-25b = (97.2 \pm 0.7)$: (2.8 ± 0.7) .

c) Druck und Temperaturabhängigkeit des Produktverhältnisses exo-25b: endo-25b bei der Reaktion von 2 mit 20: Das Verhältnis der Produkte exo- und endo-25b bei den in Tab. 4 angegebenen Reaktionsbedingungen wurde einerseits gaschromatographisch (20m-Quarz-Kapillarsäule, Siliconöl OV 17, 145°C, Trägergas: N₂; *exo*-25b: $t_{\rm R} = 1360$ s; *endo*-25b: $t_{\rm R} = 1378$ s) sowie ¹H-NMR-spektroskopisch durch Integration der Signale der vinylischen Wasserstoffe von exo-25b ($\delta = 6.12$) und endo-25b ($\delta = 5.28$) bestimmt.

d) Reaktionsvolumen $\Delta \tilde{V}$ der Addition von 20 an 2: Die partiellen molaren Volumina der Edukte 2 und 20 sowie des Produktes exo-25b werden über die Dichte ihrer in verschiedenen Konzentrationen bereiteten Lösungen mit Hilfe eines geeichten 5-ml-Pyknometers bei 20.0°C ermittelt. \tilde{V} [cm³/mol] von 2: (121.8±1.0); 20: $(99.6 \pm 0.5); exo-25b: (192.6 \pm 0.7); \Delta \tilde{V} = 192.6 - (121.8 + 99.6) =$ $-28.8 \text{ cm}^3/\text{mol}.$

CAS-Registry-Nummern

- 1: 99922-52-8 / 1_{tri} : 109746-24-9 / 2: 19078-32-1 / 3: 2781-85-3 / 4: 822-35-5 / 5: 142-29-0 / 6: 110-83-8 / 7: 628-92-2 / cis-8: 931-87-3 / trans-8: 931-89-5 / 9: 498-66-8 / 10a: 109746-10-3 / 10b: 109746-11-4 / 11a: 109746-12-5 / 11b: 33995-54-9 / 12a: 89703-46-8 / 12b: 89703-47-9 / 13a: 109746-13-6 / 13b: 109746-14-7 / 14a: 109764-56-9 / 14b: 109764-57-0 / 15a: 109746-15-8 / 15b: 109746-16-9 16a: 109836-09-1 / 16b: 109836-10-4 / 17a: 89703-40-2 / 17b: $05-1 / CH_2 = CHCH_2C1: 107-05-1$
- ¹⁾ VI. Mitteilung: K. Beck, S. Hünig, Chem. Ber. 120 (1987) 477.
- ²⁾ Aus der Dissertation K. Beck, Univ. Würzburg 1986.
- ³⁾ Experimente zur Dissertationsarbeit.
- ⁴⁾ K. Beck, A. Höhn, S. Hünig, F. Prokschy, Chem. Ber. 117 (1984)
- ^{517.}
 ⁵⁾ D. Vor der Brück, R. Bühler, C.-Ch. Heuk, H. Plieninger, K. E. Weale, J. Westphal, D. Wild, Chem. Ztg. 94 (1970) 183; J. R. Mc Cabe, C. A. Eckert, Acc. Chem. Res. 7 (1974) 251.
- ⁶⁾ Vergleiche M. L. Maddox, J. C. Martin, J. M. Muchowski, Tetrahedron Lett. 21 (1980) 7
- 7) M. Christl, U. Lanzendörfer, J. Hegmann, K. Peters, E. M. Peters, H. G. von Schnering, Chem. Ber. 118 (1985) 2940. Vergleiche auch die Reaktion von 3 mit Tetrazinen: W. Dittmar, G. Heinrichs, A. Steigel, T. Troll, J. Sauer, Tetrahedron Lett. 1970, 1623.

- ⁸⁾ L. A. Paquette, L. M. Leichter, J. Am. Chem. Soc. 93 (1971) 5128; J. Org. Chem. 39 (1974) 461; R. Gree, H. Park, L. A. Paquette, J. Am. Chem. Soc. 102 (1980) 4397; L. A. Paquette, L. M. Leichter, J. Am. Chem. Soc. 92 (1970) 1765; L. A. Paquette, L. M. Leichter, Org. Photochem. Synth. 2 (1976) 52.
- 9) Zur mechanistischen Problematik der Diels-Alder-Reaktion und Begriffen wie "synchronous", "concerted", "two-step", "two-stage", "biradical", "biradicaloid", vergleiche M. J. S. Dewar, S.
- ⁽¹⁰⁾ Ubersicht: J. Sauer, R. Sustmann, Angew. Chem. **92** (1980) 773; Angew. Chem. Int. Ed. Engl. **19** (1980) 779; G. Jenner, J. Chem. Soc., Faraday Trans. 1, 81 (1985) 2437.
- ¹¹⁾ K. Peters, H. G. von Schnering, Max-Planck-Institut für Festkörperforschung, Stuttgart. Wir danken den Autoren für die Durchführung einer Kristallstrukturanalyse.
- ¹²⁾ Die Bezeichnung exo/endo bezieht sich auf die Lage des am Norbornen oder Norbornadien addierten Heterocyclus.
- ¹³ B. Albert, W. Berning, Ch. Burschka, S. Hünig, F. Prokschy, *Chem. Ber.* 117 (1984) 1465. Vergleiche auch Lit.¹⁾.
 ¹⁴ K. Beck, S. Hünig, G. Kleefeld, H.-D. Martin, K. Peters, F. Disleacht, J. C. and Schneimer, *Chem. Ber.* 119 (1986) 543.
- Prokschy, H. G. von Schnering, Chem. Ber. 119 (1986) 543
- ¹⁵⁾ J. P. Snyder, D. N. Harpp, J. Am. Chem. Soc. 98 (1976) 7821.
- ¹⁶⁾ B. S. El'yanov, E. M. Goniberg, J. Chem. Soc., Faraday Trans. 1, 75 (1979) 172; B. S. El'yanov, E. M. Vasylvitskaya, Res. Phys. Chem. Jpn. 50 (1980) 169
- ¹⁷⁾ G. Jenner, M. Papadopoulos, W. J. le Noble, Nouv. J. Chim. 7 (1983) 687.
- ¹⁸⁾ R. Huisgen, P. H. J. Ooms, M. Mingin, N. L. Allinger, J. Am. Chem. Soc. 102 (1980) 3951. Vergleiche auch Lit.¹⁰⁾.
- ¹⁹⁾ U. Burkert, N. L. Allinger, Molecular Mechanics, ACS Mono-graph 177, Washington 1982; W. R. Roth, Nachr. Chem. Tech. Lab. 31 (1983) 964.
- ²⁰⁾ O. Ermer, Aspekte von Kraftfeldrechnungen, Wolfgang Bauer Verlag, München 1981.
- ²¹⁾ R. B. Turner, A. D. Jarrett, P. Goebel, B. J. Mallon, J. Am. Chem. Soc. 95 (1973) 790.
- 22) G. L. Gloss, K. D. Kantz, J. Org. Chem. 31 (1966) 638; Übersicht der Reaktionen von Cyclopropen: M. L. Deem, Synthesis 1982, 701
- ²³⁾ A. Fadel, J. Salaün, J. M. Conia, Tetrahedron 39 (1983) 1567.
- ²⁴⁾ G. Helmchen, B. Glatz, Ein apparativ einfaches System und Säulen höchster Trennleistung zur präparativen Mitteldruckchromatographie, Institut für Organische Chemie, Biochemie und Isotopenforschung der Universität Stuttgart 1978.
- ²⁵⁾ K. Beck, A. Höhn, S. Hünig, F. Prokschy, Chem. Ber. 117 (1984) 517.
- ²⁶⁾ Übersicht: T. Asano, T. Okada, J. Phys. Chem. 88 (1984) 238.

[170/87]